面向卫星通信的非线性选代学习混沌通信

打开文本图片集
关键词:卫星通信;混沌通信;选代学习;长短期记忆神经网络;混沌同步质量;参数优化中图分类号:TN911.7-34;TP391.41 文献标识码:A 文章编号:1004-373X(2025)10-0015-05
Abstract:Inalusion tothedemand forsecure transmission performanceinsatelitecommunication,especially in applicationscenarioswithoutsecurepayloads,achaoticcommunicationmodeloptimized bytheimprovednonlinear iterative learning isproposed.Themodeltrainingof theencryptedsignalmixedwithchaoticcariersignalsandrawinformationina specificratioisconductedbymeansof thelngshort-term memoryneuralnetwork(LSTM)toobtainneuralnetworkmodelhighly consistentwiththeparametersofthelasertransmiter,soastosolvetheproblemofincompletematching betweenthereceiver andtransmitersystemparametersinchaoticcommunicationsystems.Inordertofurtherimprovethesynchronizationqualityof chaoticsignals,iterativelearningisintroducedtoconducttheparameterotimizationoftheLSTM.Thedecryptionrecognition rateof theproposednonlinearchaoticcommunicationsynchronizationmodelbasedonimprovedLSTMisfinallstableat 94.07% ,which is 4.03% and 1.82% higher than those of the radial basis function (RBF) neural network chaotic secure communicationmodelandthechaoticsecurecommunicationmodelbasedonconvolutionalneuralntwork,respectivelyerifying that the proposed communication model has good comprehensive performance.
Keywords:satelitecommunication;chaoticcommunication;iterativelearning;longshort-termmemoryneuralnetwork; chaotic synchronization quality;parameter optimization
0 引言
近年来,全球各国航天技术发展迅猛,以星链和千帆为代表的低轨道通信卫星成为研究热点。(剩余5731字)