基于P-ISSA-GRU模型的养殖水体溶解氧含量预测

打开文本图片集
中图分类号:TP391 文献标识码:A 文章编号:1000-4440(2025)09-1781-10
Abstract:Inorder to solve the problem of low prediction accuracy of dissolved oxygen(DO)content in aquaculture water,thisstudyproposedagatedrecurrentunit(GRU)predictionmodelbasedonanimproved sparrowsearchalgorithm (ISSA).Thecorrlationcoefficients ofvarious factors in waterand dissolvedoxygencontent weredeterminedbyPearsoncorrelationcoefficient method,and thestrong corelation factors wereselecedas the inputfeaturesofte model.Byintroducing Tent chaotic mapping to improve population initialization,adaptive dynamic weight factor ω to dynamically change the weight coeficient,Gaussianperturbation(GP)toimprovetheoptimal locationupdating,theabilityof sparrowsearchalgorithm (SSA)to findglobalandlocaloptimalsolutionswasenhanced,and itsconvergencespeedwas increased.Anonlineardissolved oxygen content prediction model (P-ISSA-GRU)was constructed by optimizing the GRU network using ISSA for parametersearch.The experimental resultsshowedthattheP-ISSA-GRU model exhibited superior prediction performance com
pared to five other commonly used models.The mean square error(MSE)wasO.152(mg/L)²,themeanabsoluteerror ( MAE )was 0.311mg/L ,the root mean square error (RMSE)was 0.390mg/L ,andthe coefficientofdetermination ( R2 )was O.984.Therefore,compared to traditional models,the P-ISSA-GRUmodel developed in this study demonstratesimproved predictiveperformance for dissolved oxygen contentin aquaculturewater.
Key words:prediction of dissolved oxygen content;Pearson correlation coeffcient; improved sparrow search algorithm(ISSA);gated recurrent unit (GRU)
溶解氧是衡量池塘水体生态参数变化的重要指标,也是影响养殖池塘环境质量的关键因子[1-2]。(剩余12343字)