基于多特征提取和对比学习的知识图谱链接预测

打开文本图片集
摘 要:针对传统知识图谱链接预测方法提取图谱节点特征角度单一,且在训练过程中较少考虑节点间复杂的交互作用,构建的负例三元组质量较低等问题,提出了一种链接预测方法,旨在充分利用知识图谱节点间的相互作用和图结构蕴含的交互信息,考虑从多特征角度识别出三元组中的缺失事实。首先,通过不同的节点特征提取方式从不同角度获得节点的嵌入表示,并聚合邻居节点特征以增强其实体语义信息;其次,用多个卷积操作提取实体和关系之间的全局关系和过渡特征,通过深度特征提取的方式处理实体和关系的信息交互;最后,通过引入对比学习,干预负例三元组的构建,同时增强负例三元组的特征,提高所构建三元组的质量,最终通过计算余弦相似度筛选出预测实体。(剩余26140字)