基于双端权重约束的异质超网络表示学习

打开文本图片集
摘 要:与传统网络不同,超网络具有复杂的高阶元组关系,而现有大多数超网络表示学习方法不能很好地捕获复杂的高阶元组关系。针对上述问题,为了更好地捕获复杂的高阶元组关系,提出了基于双端权重约束的异质超网络表示学习方法。首先,该方法提出一个超边多源随机游走融合算法,将超边融入到基于超路径的随机游走节点序列中;然后,受到知识表示学习模型TransE的启发,该方法引入超边感知器模型与hyper-gram模型进行加权融合,以便于捕获超网络中复杂的高阶元组关系;最后,在四个真实超网络数据集上的实验表明,对于链接预测任务,该方法的性能几乎优于所有基线方法。(剩余18828字)