基于边扰动的链接预测解释方法

打开文本图片集
摘 要:多数链接预测模型是解释性较差的黑盒模型,因此不少学者提出了针对链接预测的解释方法,但这些方法存在着解释的目标模型单一、缺乏泛化能力、解释结果准确率不足等缺陷。为弥补这些不足,提出一种基于边扰动的链接预测的解释方法。首先利用广度优先搜索得到从头实体到尾实体的所有路径,随后搜索路径所经过实体的邻居节点,形成待解释三元组的训练子图;然后采用边扰动的方式在训练子图上重新训练嵌入模型,计算每条边对预测结果的影响程度;最后通过双向的束搜索得到对预测结果影响程度最大的路径,作为待解释三元组的解释路径。(剩余18764字)