基于深度强化学习的边缘网络内容协作缓存与传输方案研究

打开文本图片集
摘 要:为了应对第五代无线通信网络中数据吞吐量急剧增加的问题,移动边缘缓存成为了一种有效的解决方案。它通过在边缘设备上存储网络内容,减轻回程链路和核心网络的负担,缩短服务时延。到目前为止,大多数边缘缓存研究主要优化协作内容缓存,忽略了内容传输的效率。研究超密集网络的内容协作边缘缓存与无线带宽资源的分配问题,通过余弦相似度和高斯相似度求解基站之间总的相似度,将网络中的小基站根据总相似度进行分组,把缓存和无线带宽分配问题建模成一个长期混合整数的非线性规划问题(LT-MINLP),进而将协作边缘缓存与带宽分配问题转换为一个带约束的马尔可夫决策过程,并利用深度确定性策略梯度DDPG模型,提出了一种基于深度强化学习的内容协作边缘缓存与带宽分配算法CBDDPG。(剩余22212字)