基于自适应重加权和正则化的集成元学习算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:在训练集存在噪声标签或类别不平衡分布的情况下,深度神经网络具有过度拟合这种有偏差的训练数据的不良趋势。通过设计适当的样本权重,使用重加权策略是解决此问题的常用方法,但不适当的重加权方案会给网络学习引入额外的开销和偏差,仅使用重加权方法很难解决有偏差分布下网络的过拟合问题。为此,建议将标签平滑正则化和类裕度正则化与重加权结合使用,并提出了一种基于自适应重加权和正则化的元学习方法(ensemble meta net,EMN),模型框架包括用于分类的基本网络和用于超参数估计的集成元网。(剩余20037字)

目录
monitor
客服机器人