基于自变量简约的大规模稀疏多目标优化

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:现有的大多数进化算法在求解大规模优化问题时性能会随决策变量维数的增长而下降。通常,多目标优化的Pareto有效解集是自变量空间的一个低维流形,该流形的维度远小于自变量空间的维度。鉴于此,提出一种基于自变量简约的多目标进化算法求解大规模稀疏多目标优化问题。该算法通过引入局部保持投影降维,保留原始自变量空间中的局部近邻关系,并设计一个归档集,将寻找到的非劣解存入其中进行训练,以提高投影的准确性。(剩余15470字)

目录
monitor
客服机器人