轻量级多信息图卷积神经网络动作识别方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:针对如何在保持低参数量和低计算量前提下构建高性能模型的问题,提出一种轻量级多信息图卷积神经网络(LMI-GCN)。LMI-GCN通过将关节坐标、关节速度、骨骼边、骨骼边速度四种不同信息编码至高维空间的方式进行信息融合,并引入可以聚合重要特征的多通道自适应图和分流时间卷积块以减少模型参数量。同时,提出一种随机池数据预处理方法。(剩余17329字)

目录
monitor