面向电力场景的双通道图像拼接窜改检测模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:随着电力生产智能化的推进,电力图像被广泛应用。然而由于图像编辑软件的发展导致部分电力图像被恶意窜改,严重影响电力生产进程。其中以拼接窜改最为常见。基于深度学习技术,提出了一种双通道CenterNet的图像拼接窜改检测模型。原色图像通道提取窜改图像的色调、纹理等特征,隐写分析通道发掘图像窜改区域的噪声特征。(剩余15694字)

目录
monitor