基于双向映射学习的多标签分类算法

打开文本图片集
摘要:现有的多标签学习算法往往只侧重于实例空间到标签空间的正向投影,正向投影时由于特征维数降低所产生的实例空间信息丢失的问题往往被忽略。针对以上问题,提出一种基于双向映射学习的多标签分类算法。首先,利用实例空间到标签空间的正向映射损失建立线性多标签分类模型;然后,在模型中引入重构损失正则项构成双向映射模型,补偿由于正向映射时导致的鉴别信息的丢失;最后,将双向映射模型结合标签相关性和实例相关性充分地挖掘标签之间、实例之间的潜在关系,并利用非线性核映射提高模型对非线性数据的处理能力。(剩余18256字)