基于结构性质保持和相关性学习的多标记分类算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:现有的多标记学习技术大多只考虑了相关性学习问题而忽略了数据因变换而引起的结构性质不一致问题,导致原始特征数据的结构性质因映射变换发生改变,从而影响了模型的分类性能。为了解决这一问题,提出了基于结构性质保持和相关性学习的多标记分类算法。首先,构造了线性映射函数以实现特征空间与标记空间的映射;然后借鉴图正则化思想,引入基于特征数据的结构性质保持策略以降低特征数据因线性变换引起的结构性质差异;最后,针对标记数据引入基于标记对的相关性学习策略进一步优化算法参数,以提高模型的分类性能。(剩余16705字)

目录
monitor