融合ESCA注意力机制的迁移学习在X线肺炎检测中的研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP181 文献标识码:A文章编号:1006-8228(2025)08-46-06

Abstract:Thispaperproposesatransferlearningframeworkbasedonchanelspatialatentionmechanismsfordetecting pneumoniainchestX-rayimages.Theframeworkintegratesthefeatureextractioncapabilitiesofthreepre-trainedmodelsResNet101,ResNet50ndReNet34andicorporatesanicientcaelspatialaetionmechansmECA)toddressise thattraditionalmethodsfocusonlyonchannelinformationwhileneglectingspatialinformation.Byleveragingthechanelspatial attentionmechanism,themodelcansimultaneouslyfocusonbothchannelandspatialinformation,therebysignificantlyiproving clasificationaccuracyExperimentalresultsdemonstratethatthisapproachachievesexcelentperformanceintermsofaccuracy (2 (98%) ,precision (97.2%) ,recall (99%) ,and specificity (95.3%) .This study provides strong support for pneumonia detection and offersanew efficient solution for medical image classification.

eywords:Channel Spatial Attention Mechanism;Transfer Learning;Pneumonia Detection;Accuracy

0引言

2019冠状病毒病(Coronavirus Disease 2019,COVID-19)是一种严重的疾病,全球公共卫生部门目前正试图通过早期发现和有效的防控手段,来遏制这种病毒的传播l。(剩余9668字)

monitor
客服机器人