轻量级多尺度特征融合驱动下的舌苔检测方法研究

打开文本图片集
中图分类号:TP391.4;G434 文献标识码:A 文章编号:1006-8228(2025)08-22-08
Abstract:ThisstudyapliesdeeplearningtotonguecoatingfeaturerecognitionintraditionalChinesemedicine,proposinga lightweightnetworkFEA-YOLOv1lbasedoncomputervision.Thearchitecturerealizesmuli-scalefeaturefusionthroughASPF, FEC3K2,andEC3K2modules,enhancingthedetectioncapabilityfortonguecoatingfeaturesofdiferentshapesandscales,while reducingcomputationalcostsandsuppressingnoiseinterference.Experimentsshowthattheoptimized modelimprovesthemAPby (204号 3.1% andreducesparametersby115,520comparedwiththeoriginalYOLOv11,providinganeficient lightweightsolutionfor automated tongue coating diagnosis.
Keywords:Computer Vision; Multi-scale Feature Fusion; Lightweight Network; Deep Learning
0引言
舌苔作为中医诊断的重要对象,可通过高分辨率系统获取图像,但传统识别依赖医师经验,存在主观性,亟须客观标准化研究。(剩余11475字)