融合残差与CIFAR10-quick结构的改进胶囊网络肺炎识别研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.4;TP181 文献标识码:A 文章编号:1006-8228(2025)08-34-07

Abstract:Pneumoniaisacommondiseaseoftherespiratorysystem.Inrecentyears,despitetheappicationofpowerful antibactrialdrugs,thefatalityrateofpeumoniainsomespecificpopulationshasnotbeenfurtherreducedTorealizethetimely diagnosisofpneumonia,thispaperproposesanoveldeeplearningmethodwithanimprovedcapsulenetworkforpneumonia recognitionbasedonchestX-rays.Theproposed methodusespartoftheCIFARi0-Quick network toextractfeaturesand inputs themintothemaincapsulelayerinvectorform.Thissolvestheproblemof insuficientinvariantfeatureextractionfromthe originalcapsulenetworkandefectivelyimprovesthemodel'sresistancetogradientvanishingthroughskipconnectionsacross residualmodules.TwocomparativeexperimentsontheChestXRay20l7datasetdemonstratethattheproposedmethodoutperforms convolutionalneuralnetworksinresistingoverfitingandhandingsmal-sampledatasets.Italsoachieveshigherclasification acuracycomparedtothreeothercapsulenetworkvariantsInthetestingphase,theprecision,specifityrecall,andF-scoreof the proposed method are 0.966,0.985,0.731,and 0.832,respectively,indicating itssuperiority.

KeyWords:CapsuleNetwork;ResidualBlock;PneumoniaRecognition;DeepLearning;Convolutional Neural Network

0引言

肺炎(Pneumonia)是一种呼吸系统常见病,一般指终末气道、肺泡和肺间质的炎症,因此,实现肺炎的早期诊断,对患者的治疗和痊愈就显得尤为重要。(剩余7947字)

monitor
客服机器人