公平代价感知下依托VIKOR的二阶段影响力最大化

打开文本图片集
中图分类号:TP301.5 文献标识码:A文章编号:1006-8228(2025)08-01-07
Fairness-Cost-Aware Two-Stage Influence Maximization Relying on VIKOR
ZhangHang,WangXiaojie,Xie Zehao
(SchoolofInformationanagementXinjiangUniersityofinanceandEconomicsUrumqiXinjiang3ona)
Abstract:InfluenceMaximization(IM)isakeyprobleminsocialnetworkanalysis,aimingtoidentifyasedsetofagivensize tomaximizethescopeof influencepropagation.Previous studies haveprimarilyfocusedonpropagation breadth whileneglecting fairness.ThispaperproposestheFaires-OrientedInfluenceMaximizationAlgorithmBasedonEvolutionaryAlgorithms(FIMVGA). Byconstructinghre-dmensioalevaluationframeworkthatintegratespropagationbreadthfiessndfiesscost,VGA effectivelybalancespropagationbreadthandfaiess.Experimentalresultsshowthatcomparedtothebaselinalgorithms,FMVGA achievesabeterbalancebetweenpropagationbreadthandfairnesswhileconsideringfairness,therebyefectivelyrealizigthe equilibrium between the two.
Keywords:InfluenceMaximization;SocialNetworks;Fairness;Breadthof Dissemination;EvolutionaryAlgorithms
0引言
影响力最大化(InfluenceMaximization,IM)是复杂网络分析中的传播优化问题。(剩余10507字)