公平代价感知下依托VIKOR的二阶段影响力最大化

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP301.5 文献标识码:A文章编号:1006-8228(2025)08-01-07

Fairness-Cost-Aware Two-Stage Influence Maximization Relying on VIKOR

ZhangHang,WangXiaojie,Xie Zehao

(SchoolofInformationanagementXinjiangUniersityofinanceandEconomicsUrumqiXinjiang3ona)

Abstract:InfluenceMaximization(IM)isakeyprobleminsocialnetworkanalysis,aimingtoidentifyasedsetofagivensize tomaximizethescopeof influencepropagation.Previous studies haveprimarilyfocusedonpropagation breadth whileneglecting fairness.ThispaperproposestheFaires-OrientedInfluenceMaximizationAlgorithmBasedonEvolutionaryAlgorithms(FIMVGA). Byconstructinghre-dmensioalevaluationframeworkthatintegratespropagationbreadthfiessndfiesscost,VGA effectivelybalancespropagationbreadthandfaiess.Experimentalresultsshowthatcomparedtothebaselinalgorithms,FMVGA achievesabeterbalancebetweenpropagationbreadthandfairnesswhileconsideringfairness,therebyefectivelyrealizigthe equilibrium between the two.

Keywords:InfluenceMaximization;SocialNetworks;Fairness;Breadthof Dissemination;EvolutionaryAlgorithms

0引言

影响力最大化(InfluenceMaximization,IM)是复杂网络分析中的传播优化问题。(剩余10507字)

monitor
客服机器人