基于自监督聚类算法的小样本医学图像分类

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:基于深度学习的医学图像分析是智慧医疗的一个重要方向。但是通常情况下,医学图像数据集数据量很小,而且由于医学图像的标注困难,耗费大量人力物力,所以带标签的训练数据很难获取。如何使用极少的带标签数据和无标签的数据得到一个较好的网络模型是本文的主要研究内容。该文提出基于深度聚类的自监督网络模型作为特征提取器,并且使用标签传播算法对特征进行分类,解决了只有极少量标签(例如1张,5张或者10张)即小样本情况下的医学图像分类问题,在BreakHis数据集上取得了比传统机器学习算法更好的效果,并且接近于全监督学习方法。(剩余5266字)

目录
monitor