基于弱监督学习的医学图像分割方法研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:为提升针对医学图像的弱监督语义分割性能,本文从种子线索的生成出发,在CAM网络训练中引入多空洞卷积率的空洞卷积,以从图像级别的标注中产生密集位置预测,扩大响应范围。实验证明本文提出的分割模型在CAMELYON16数据集上能得到10个百分点的提升,并通过实验结果图证明本文模型可在仅有图像及标签已知的情况下为医生的诊断提供参考。(剩余4222字)

目录
monitor