基于小生境遗传算法与径向基代理模型的短期风电功率预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:为提高短期功率预测精度,以赋予风电被电网资产更大规模消纳的优势,建立一种基于主导特征影响因素和小生境遗传算法改进的径向基代理模型的滚动式短期(0~72 h)风电功率预测模型。首先,基于罚函数和排挤机制的小生境技术对传统基本遗传算法进行改进,以径向基代理模型(RBF)作为建模基础,利用改进后的遗传算法以反传误差极小为目标函数对RBF模型的连接权值进行优化,借助其寻优能力来获取最佳权值,以达成对RBF网络的改进和二次训练;然后,基于主导特征气象因素,结合改进的RBF模型最终建立N-SGA-RBF风电出力预测模型,对风电场连续3日0~72 h输出功率进行预测;最后,对N-SGA-RBF模型、RBF模型以及BP模型做预测结果趋势变化、各采样点绝对/相对误差分布、发电预测预报准确率和合格率的对比。(剩余22322字)

目录
monitor