基于改进YOLOv7的番茄果实成熟度检测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号S126 文献标识码A文章编号 0517-6611(2025)12-0193-03

doi:10.3969/j.issn.0517-6611.2025.12.042

开放科学(资源服务)标识码(OSID):

MaturityDetection of Tomato Based on Improved YOLOv7

TANRong-yig,iang,LJun-etal(ShlfSartAultureEgiingeiVocaalClgeoflureejing 102442)

AbstractTouratelyentifyeatuityoftoatoargtinfcilitviroents,provetectioefecydaltydchve inteligentharvestingAancdLOodelisroposdfotetigtaturitoftgettoatofruis.sproachce model'sfocusonteagetregiosfputdatabyitegatintheCBAatetiomehasm;eploingtheSof-algoritetiely preventsissdetetiosuetigsitepngetsgsuppesdbyaingetiofoacngte originallossfunctioEOUandeplacing iithIOU,eexperientalsultssowtatteimprovedYOLOodelhasdetectioecision of 93.1% ,a recall rate of 90.8% ,and a mean average precision of 94.8% . Compared with the original YOLOv7 and YOLOv5 models,it hasimprovedindetetionprecision,ecallate,andmanaverageprecision,providingtechicalreferecefortmatoharvestingoplex environments.

Key words Tomato; YOLOv7; Maturity detection; Target recognition

番茄收获过程中,人工采摘成本占据 33%~50% 。(剩余5065字)

目录
monitor