类不平衡通信辐射源个体识别

打开文本图片集
中图分类号:TN911.6 文献标志码:A文章编号:1003-3114(2025)04-0844-08
Abstract:Theexistenceofcertaincommunicationemiters,whicharecharacterisedbyashortdurationofuseandhighconcealment,resultsinalimitedamountofdatabeingcolectedforrainingpurposs.Thisleadstotegenerationoftrainingsamplestatare imbalancd,ichiuafftstecuracyofSpecificEmiterIentification(SE)Tddressteisusdentifdodfor identifyingcommunicationemitersbasedonincrementalrandomfeaturetrainingwithaMultivariateLongShort-TemMemoryFuly Convolutional Network(MLST-FCN)isproposedtoenancetheaccracyofSEIinthecontextofclass-imbalance.TheMSTM-FCN modelservesasthefoundationforsignalfeatureextraction,withGausianvectorsgeneratedrandomlyduringthetrainingprocsand splicedtogeterwithtefeaturesextractedbyteetworkforsimultaneous taining.Thisapproachstrengthensodelgeneralizationand improvesitsresiliencetolassbalaneeancingtheoverallacuracyExperimentalsultsemostratethatteproposdetod ismoreeffectiveinaddressingtheissueoflass-imbalaneincommuicationeiters.Furthere,eaccuracyofteproposed methodisconsistentlyigherthanthatofecovetioalmetodevenundervarngdegreesofasmbalanceconditiosisiprovement enhances the accuracy of SEI.
Keywords:MLSTM-FCN;class unbalance;SEI;classification and identificatior
0引言
SEI[1] 又称辐射源“指纹”识别,对接收机接收到的电磁信号进行“指纹”特征提取,根据先验信息对发射此信号的辐射源个体进行分类识别。(剩余9284字)