基于聚类等势星球图的物联网物理层认证方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN929.5 文献标志码:A文章编号:1003-3114(2025)04-0789-09

doi:10.3969/j. issn.1003-3114.2025.04.016

Abstract:Duetotheopennessofradio transmision,theinformationsecurityproblems broughtbywirelesscommunicationnetworksareconstantlyemerging.Inordrtoensurethesecurityofuserinformationinwirelesscommunicationanovelphysical-layer identityauthenticationmetodfortheInternetofThingshasbenproposed.ThismethodinitiallemploystheI/Qmodulationalgo rithmtotransfooe-dimensionalsignalsintotwo-dimensionalconstelationmapsonthecomplexplane.Subsequently,itcombines theDensity-BasedSpatialClusteringofAplicationswithoise(DBSCAN)algorithmtoconstructtwo-dimensionalolor-clusterd contourstellarimages.Theseimagesemphasizediferentchannelcharacteristicsandfacilitatesignalclasification.Basedontwo typesofmeasuredchnneldate:oneinvolvingdiferentphysicalregionswhereuserterminaldevicesmaybelongtodiferentcelular zones,andtheotherinvolvingmeasuedchaneldatawithinthesamecellularzone.Inbothscenarios,frequency-domainfull-channeldatawereconvertedintotwodimensioalimagesforrecognitiotesting.ConvolutionalNeuralNetwork(CNN)andSupportVec torMachie(SVM)modelswereemployedincomparativeexperimentson8OOclusteredcontourstelarimages.Simulationresults demonstrate that the proposed CNN model achieves an accuracy rate of 99.6% inuser recognition,effectively identifying legitimate users.Thisresearch providesasolidtheoreticalfoundationfortheapplicationofclusteredcontourstelarimagealgoritmsandCNN models in the field of physical-layer authentication.

Keywords:Internetof Things;information security;channel feature;clusteredcontour stellar images;CNN

0引言

随着移动通信技术的迅速发展,越来越多的通信设备加人无线通信网络,伴随着大量价值较高的重要信息在其中传输,通信安全问题成为贯穿整个无线通信技术发展过程中的首要问题,因此高效应对无线通信安全问题变得十分迫切,且具有重要的研究意义与应用价值[1]

物理层认证作为保障无线通信安全的核心技术之一,相比于应用层认证机制,能够有效抵御模仿攻击,具有兼容性好、复杂度低、认证速度快、不需要考虑各种协议执行的特点。(剩余9940字)

monitor