基于多源异构数据的高速路网交通拥堵状态识别

打开文本图片集
中图分类号:U491.265 文献标志码:A文章编号:1003-3114(2025)04-0807-08
doi:10.3969/j. issn.1003-3114.2025.04.018
Abstract:Withthecontinuous developmentofcoretechnologiesintheInternetof Things,suchasradiofrequencyidentification and5Gcommunication,highwaytraffccongestionstaterecognitionhasintroducedmoreheterogeneousreferencesources.Toavoid complexityandusabilitychallengesoftraditionalvisualandGPSmethods,ahighwaytraficcongestionstaterecognitionalgorit frameworkbasedonulti-sourceheterogeneousdataisproposed.Consideringthecharacteristicsof5Gandradiofrequencyidentificationwirelesscommunicationetworkdataaneficientdatapreprocessngalgoitisdsignedtoimproedataqualityandreliability. ForthepreprocessedmobilesignalingandETCgantrydata,afusiondistance-weightedalgorithmandanS-shaped3-parameter(S3) trafiflowodelareutildtovaluatetetraficongestionstatefoadsegmentsMoreoveadecisio-evelfusinmetodisde signedtoacuatelydescribetetraficfowspdandcongestionconditiosatteghwalevel.inally,hroughcasesudynd verificationusingactualdatafromtheentirehighwaynetworkinZhejangprovince,theprecisionandrecallrateoftraffccongestion state recognition reached 93.6% and 95.26% ,respectively, showing a significant improvement compared to single-source methods. Theproposedalgoritdemonstratesitsefectivenessandpracticalityinthefeldofhghwaycongestiostaterecogitionandcanpro vide a basis for corresponding road network traffic management decisions.
Keywords:congestion state recognition; data fusion; IoT;mobile signaling
0引言
受车流量持续增长、节假日免费通行等因素影响,交通拥堵问题日益突出,如何实时、动态地掌握拥堵路段的空间分布、拥堵程度、持续时长等道路实际通行状况,是国内外研究的热点。(剩余9966字)