基于残差网络的目标参数预测

打开文本图片集
中图分类号:TP182 文献标志码:A文章编号:1003-3114(2025)04-0832-12
Abstract:Parameter estimationforcone-shapedspacetargetsplaysacrucialroleintaskssuchastargetatitudedetermination, re-entrylandingointpredictio,andtargetrecognition.Intisstudyadeepleaingaproachisploedtopredictgeoicad motionparametersofconshapedspacetargetsundervrioustyesoffalsetargetinteference.Fistlyleveragingteonceptoffacet decompositionfromphysicaloptics,multipletargetfacetscatteringmodelsareestablished,andsimulationsofchosignalsfromvarious targetsareconducted.Subsequently,aShort-TieFourierTransfor(ST)isappdtoanalyeehosignalsintime-frqencydo main,enablingextractionofmicro-Dopplertime-frequencyspectrainducedbytargetmicro-motions.Finaly,basedonheroposed SpatialPyramidPoling-ResidualNetwork(SPP-ResNet),parameterpredictionforcone-sapedpacetargetsisachieved.Siulation results demonstrate that the proposed method achieves an Mean Relative Error(MRE)of less than 15% in parameter predictions,laying afoundation for accurate trajectory prediction of cone-shaped space targets.
Keywords:lidar;micro-Doppler;optical signal processing;deep learning;parameter identification
0 引言
物体的微动会引起激光雷达回波的额外频率调制,从而产生目标多普勒频率的侧带,称为微多普勒效应[1]。(剩余15471字)