一种多智能体协同的接人网切片资源分配方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN929.5 文献标志码:A文章编号:1003-3114(2025)04-0780-09

Abstract:Network slicingtechologyneeds toachievend-to-endon-demandsegmentationof physicalnetworks,efectivelyllo cateavailableatesaongdinttenants,ndlaeuslyimncessaryesoucstoachscetotdietd requirements.Amult-agentreinforcementlearing methodforresourcealocationinRadioAcess Network(RAN)isproposedtoaddressthisisue.irstly,alayeredframeworkisdesignedtosetupeuralnetworkagentsatachtenant,hichdynamicalljustre sourceallocationsrategiesasedonchangesinunderlingtraffc.henanagegationlaerissetupomanagethenetworkpara tersofeachitelliententandusteinggrihseusdtoageateentokparamesofntellgtagntssilar needfrom tenants,whichareusedtoupdatethelocalmodelsofinteligentagentsateachtenant,achievingfastertrainingandreducingcommunicationcostswhileachievingtheglobaloptimalsolution.Simulationresultsshowthattherewardvalueofthisalgorithmis improved by about 15.7% compared to other existing algorithms,and the Service Level Agreement (SLA) satisfaction of tenants and the overall resource utilization of the system can be maintained at a high level,with good scalability.

Keywords:5Gnetworkslicing;RANslices;deepreinforcementlearning;multi-agentreinforcementlearning;radio resource allocation

0引言

网络切片是5G通信技术的关键技术之一[1]允许基础设施提供商创建多个端到端逻辑网络,并在每个逻辑网络中部署特定的存储、网络和计算资源,再提供给租户。(剩余11800字)

monitor