人工智能驱动多源融合在油气行业的探索与应用

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TE08 文献标志码:A

Abstract:Energyconsumptionexpensesbecomeasignificantportionof productioncosts asoil andgasextraction moves into thehigh-water-cutphase.Thenational "dual-carbon"planisalsopushingtheenergysectortothetransitionoflow-carbonization.How toapplyadvanced technologies toreduce productioncostsandcarbon emissonshas become anurgent problemto be solved intheenergy industry.Inorder tolower productioncostsandcarbon emissions,this studyoffersathorough analysis of thedevelopmentanduseof renewableenergytechnologies inoil extraction enginering,such as hydrogen energystorageand wind-solar hybrid systems.The instability problem ofnew energyhasbecomeanew challnge thatthe oil and gas industryhas toface.Theoptimizationandpredictivecapabilities demonstratedbyartificial inteligence(AI)technologyin fieldssuch asoil andgasexploration and development,wellogging interpretation,andreservoir enginering providenewsolutions to the instabilityproblem of new energy.Future research direction for AI to achievemore accurate suply-demand forecasts and more intellgent energy scheduling was proposed.Theresultsshowthatdeepintegrationof oil andgas industry andrenewableenergydriven byAItechnologycan furtherreducecostsandemissons,accelerategreen transformation,and ultimatelyachieve the sustainable development of digital oilfieldsand multi-energy complementaryapplications.

Keywords:newenergy;artificialinteligence;energyconservationandconsumptionreduction;multi-nergycomplementari ty;multi-source fusion

当前,随着国家经济的高速增长及工业化、城镇化进程的显著加速,引发油气需求量的急剧攀升[1]。(剩余23222字)

monitor
客服机器人