地震属性驱动的条件生成对抗网络沉积微相模型构建

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.41 文献标志码:A

Abstract:Duetothecomplexityand strong heterogeneityof stratigraphic structure,aswellasthelimitedavailabilityoflogging,core,andoil testing data,existing sedimentarymicrofacies modeling methods struggle toachieve acurateresults.To address this challenge,anew modeling approach basedon conditional generative adversarial networks(cGANs)was proposed.This methodutilizes greycorrelation analysis tocalculate thedegree ofcorelationbetween various seismicattributes andthesand-to-groundratio,thereby identifying atributes with strong predictiverelevance.These selectedseismicatribute imagesare thenusedas inputs toaconvolutional neural network,whichisemployed to constructaprediction model for the sand-to-groundratio.Theresulting predictions are visualizedasathermal map,which,combined with wellog phasediagrams,servesasajointconstraintfortraining thegenerativeadversarialnetwork.Basedonthis,asedimentarymicrofacies generation model is developed toenableaccurate modelingof sedimentarymicrofacies.This methodwasapplied toacase studyof an oilfieldin eastern China.Theresults demonstratethatthecGAN-based modelcan efectivelycapturecomplex geological patterns,achieving a well-point coincidence rate of 94.1%

Keywords:conditional generative adversarial network;deep learning;sedimentary microfacies;sand-to-groundratio;gre! correlation;convolutional neural network

期川反阴段,佃气贝源八多分布仕发东、难川反时区域[3」,且受到测井、岩心、试油等数据不足的影响,现有沉积微相建模方法[4-7]难以实现精确建模。(剩余18008字)

monitor
客服机器人