基于改进Swin-Transformer的果树病叶分类模型

打开文本图片集
中图分类号:TP391.4 文献标志码:A 文章编号:2096-9902(2025)14-0033-04
Abstract:Inrecentyears,climatechangeandchangesinagriculturalactivitieshaveincreasedthefrequencyandseverityof plantdiseases,havingamajorimpactonfoodproductionandqualitysafety.Therefore,toensurefoodsecurity,timelyand accuratedetectionanddiagnosisofplantdiseasesarecrucial.Thispaperdesignsatreediseaseleafclassficationmodelbased ontheimprovedSwin-Transformer,whichoptimizesfeaturesbyintegratingdual-pathatentionmechanisms.Atthefeature processinglevel,amulti-levelprocesingstructureicludinglayerandardzatiodaptivepolingndfullonecdasif isdesiged.ThiscompositearchitecturemaintainsteadvantagesofTransfomersglobalmodelingandsignificantlyimprovesthe eficiencyofcapturingfine-grainedpathologicalfeaturesthroughanatention-guidedfeatureenhancementmechanism.The proposed model achieves greater accuracy than previous convolution and visual transformer-based models.
Keywords:deeplearning;atentionmechanism;convolutional neural network;plantdiseaserecognition;smartagriculture
植物病害是导致粮食产量与质量降低的重要因素。(剩余5333字)