基于CA-YOLOv9网络的实时全景多尺度课堂行为识别

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:随着人工智能的发展和“智慧课堂”概念的兴起,课堂行为智能化识别成为研究的热点。目前,国内外研究多采用数个学生或教室的局部影像,而对于学生人数密集、尺度变化范围大且存在大量物体遮挡的全景教室图像实时检测鲜有涉及。为此,文章基于YOLOv9网络,加入CA模块,构建了CA-YOLOv9网络;之后,通过结构分析实验、消融实验和对比实验,得到了CA-YOLOv9网络的最佳结构,并验证了其识别性能;最后,将训练好的CA-YOLOv9网络应用于全景多尺度课堂行为识别,证明了该网络能在不降低推理速度的同时提升检测精度,初步验证了该网络在智慧课堂中实时应用的可行性。(剩余10655字)

monitor