SW⁃SAN:基于Seq2Seq结合注意力机制与滑动窗口的车辆轨迹预测模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 针对长时间内4~5 s车辆轨迹预测精度较差的问题,提出基于Seq2Seq结合注意力机制与滑动窗口的车辆轨迹预测模型(SW⁃SAN)。首先,使用滑动窗口的方法更新历史轨迹状态集合,利用编码器对目标车辆的历史轨迹数据编码,得到历史轨迹特征向量;其次,经过注意力机制计算历史时间内各时刻的关联性得分、时间注意力权重因子和历史时间相关性特征向量;最后,解码器将历史时间相关性特征向量作为输入,多次循环解码层,输出目标车辆的未来预测轨迹。(剩余9786字)

monitor