AI冲击何以引发职业焦虑?
——基于微博用户话语的失业风险感知研究

打开文本图片集
Abstract:To investigateunemployment risk perception intheeraofartificial intelligence,thisstudyemployed sentiment analysis,LDAtopic modeling,and semantic network analysis todisect discourse from Weibo users between November30,2022,andDecember31,2024.Thefindingsreveal that:Sentiment withinuserdiscoursewaspredominantly negative,andthesynchronizationofinformationdiseminationandemotionalexpressioncontributedtothepolarizationof public opinion; User discourse coalesced around three categoriesofunemployment risk perception-“individual”, “occupational”and“societal"—respectively pointing tocrises of personal competency,occupational groupreplacement, andlarge-scale societalunemployment;The discoursereflected underlyingconflictsstemming frommaldistribution of social power,highlighting the tension between technological advancement and the safeguarding of social rights and benefits.
Keywords:unemployment risk perception; LDA topic modeling; semantic network analysis; discourse analysis
在第四次工业革命的技术转型中,人工智能技术的突破性发展驱动着社会系统发生重构。(剩余12798字)