注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:联邦学习解决了机器学习的数据孤岛问题,然而,各方的数据集在数据样本空间和特征空间上可能存在较大差异,导致联邦模型的预测精度下降。针对上述问题,提出了一种基于差分隐私保护知识迁移的联邦学习方法。该方法使用边界扩展局部敏感散列计算各方实例之间的相似度,根据相似度对实例进行加权训练,实现基于实例的联邦迁移学习。(剩余12747字)
登录龙源期刊网
购买文章
基于差分隐私保护知识迁移的联邦学习方法
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00