多元时序的深度自编码器聚类算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对深度聚类算法对多变量时间序列数据(MTS)的特征提取能力不足等问题,提出一种新的深度聚类结构模型(MDTC)。为了提取MTS的关键特征并实现降维,提出一维卷积学习MTS的属性和时序维度的特征表示与循环神经网络等网络层组成的自编码器结构;为了提高模型对时序特征的表示能力,提出了MCBAM时序注意力模块,用于增强MTS序列中不同时间段的表示特征。(剩余12066字)

目录
monitor