基于深度多匹配网络的多轮对话回复选择模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:现有工作利用神经网络构建了各种检索模型,取得了一定的成功,但仍存在注入模型信息筛选不充分、引入噪声和对已知内容的潜在语义信息、时序关系挖掘不充分问题。针对上述问题,提出了基于深度多匹配网络的多轮对话回复模型(DMMN)。该模型将上下文与知识作为对候选回复的查询,在三者编码之后提出预匹配层,采用单向交叉注意力机制分别筛选出基于知识感知的上下文与基于上下文感知的知识,识别两者中重要的信息。(剩余14691字)

目录
monitor