基于值函数估计的参数探索策略梯度算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:策略梯度估计方差大是策略梯度算法存在的普遍问题,基于参数探索的策略梯度算法(PGPE)通过使用确定性策略有效缓解了这一问题。然而,PGPE算法基于蒙特卡罗方法进行策略梯度的估计,需要大量学习样本才能保证梯度估计相对稳定,因此,梯度估计方差大阻碍了其在现实问题中的实际应用。为进一步减小PGPE算法策略梯度估计的方差,提出了基于值函数估计的参数探索策略梯度算法(PGPE-FA),该算法在PGPE算法中引入Actor-Critic框架。(剩余11861字)

目录
monitor