基于特征调制的轻量化MVSNet研究

打开文本图片集
中图分类号:TP183 文献标识码:A文章编号:1006-8228(2025)12-83-06
Research on LightweightMVSNetBased on Feature Modulation
Liu Zhen,Cheng Yang,Chen Haoxian,Liu Junbiao,Chen Ren,Huang Yanping (SchoolofPhysicsandOptoelectronicEngineering,FoshanUniversityFoshan,Guangdong528225,China)
Abstract:Multi-viewStereo(MVS)isacrucialtechniquefor3Dscenereconstruction.Amongvariousapproaches,deepleaing basedmult-view3DreconstructionhasbeenextensivelystudiedduetoitspromisingperformanceHoweveritspractical applicationisoftenconstrainedbythememorybotteneck,makingitdificulttobaancereconstructioneffciencyandauracy. Toadressthisissue,thispaperproposesalightweightnetworknamed SSC-MVSNetformulti-viewdense3Dreconstruction. ThenetworkemploysSpatiall-AdaptiveFeatureModulation(SAFM)toenhancemulti-scalefeaturerepresentation,introducesa SemanticDifferenceModule(SDM)tostrengthenboundaryresponse,andutilizesCrossNormandSelfNormtooptimizedepth propagation,therebyconvertingsparsedepthmapsintodenseresultswithlowcomputationaloverhead.Experimentsdemonstrate that on the DTU dataset,the overall quality(Overall) and completeness(Comp) reach 0.359mm and 0.313mm ,respectively. Compared to Fast-MVSNet,the completenessmetricisimproved by approximately 22.4% ,while thememory consumption increases byonly 5% .Thispaper provides a high-performance solution for lightweight 3D reconstruction.
Keywords:Multi-View;3DReconstruction;MVSNet;Lightweight
0引言
多视图立体视觉(Multi-ViewStereo,MVS)作为多视图三维重建的核心技术,旨在从已知相机参数的多视角图像中恢复密集三维场景,其作为计算机视觉领域的一个重要问题而被广泛研究。(剩余8839字)