基于YOLOv13的无人机类别检测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.4 文献标识码:A文章编号:1006-8228(2025)12-14-05

Abstract:UAVdetectionfromaUAVperspectiveremainsaresearchhotspotinthefieldsoflow-atitudeeconomyandUAV autonomousobstacleavoidance.However,thereisstillalackofpubliclyavailabledatasetsspecificallydesignedforrecognizing diferentUAVmodels.Toadressthisgap,thisstudyconstructsacomprehensiveUAVimagedatasetcontainingvariousscenarios andviewpoints,coveringthreecommontypesofUAVs.Adetectionmethod integratingtheYOLOv13algorithmwithMosaicdata augmentationisproposdtoachieveeficientandaccuratemult-typeUAVidentication.Duringtraining,Mosaicdataaugmentation enhancesthemodel'sgeneralizationcapabilityComparativeexperimentsareconductedtoevaluatetheadvantagesindetection accuracyoftheproposedmethod.Experimentalresultsontheself-builtdatasetdemonstratethattheproposedmethodachievesan excellent mAP50of 95.4% ,indicating high precision whilemaintaining favorabledeployment flexibility,therebyvalidating its effectivenessin practical UAV recognition tasks.

Keywords:Object Detection;UAV;YOLOv13;Dataset;Artificial Intelligence

0引言

随着低空经济的快速发展,配备摄像头的小型无人机在日常生活记录、农业监测、安防巡查以及军事侦察等领域的应用日益广泛。(剩余7418字)

monitor
客服机器人