警用无人机协同巡逻的多模态ALNS优化算法

打开文本图片集
中图分类号:TP18;V279 文献标识码:A 文章编号:1006-8228(2025)12-56-07
Abstract:ThispaperaddresesthetypicalNP-hardproblemofcooperativepatrolpathplaningforpoliceunmanedaerialvehicles (UAVs)byproposinganovelchaotic-reinforcement-leaing-drivenmultimodaladaptivelargeneighborhoodsearch(CRL-ALN) algorithm.Thealgorithmincorporatesadeepreinforcementlearingframeworktoestablishanintellgentmultimodaloperator selectionmechanism,whichdynamicallcordinatesdestructionandrepairoperatorswhileintegratingchaoticsequencestoenhance globalexplorationcapabilityFormuli-AVcooperativepatrolscenariosfromasinglenest,adualobjectiveoptimizationmodelis formulatedwithcomprehensiveconsiderationoftimewindowconstraintsandpriort-basedcoverage.Extensiveexperimentsonten randomlygeneratedtestinstancesdemonstratethattheproposedCRL-ALNSalgorithmachievessignificantperformance improvements over an enhanced genetic algorithm,reducing total flight distance by 72.7% and the number of required UAVs by 38.5% onaveragewhilemaintainingstabilityandconvergenceacrossdiversespatialconfigurations,thusfullyvalidatingits effectiveness and superiority.
KeyWords:PoliceUAV;PathPlanning;ALNS;ReinforcementLearning;ChaoticOptimization;Multimodal OperatorSelectic
0引言
当前公共安全形势日益复杂,构建立体化治安巡逻体系具有重要现实意义。(剩余8345字)