融合注意力机制与集成学习的肺炎CT图像智能诊断研究

打开文本图片集
中图分类号:TP319.4 文献标识码:A文章编号:1006-8228(2025)12-19-07
Research on Intelligent Diagnosis Pneumonia CT Images Integrating Attention Mechanisms and Ensemble Learning
DiaoLijuan,Wu Wei,Jin Xinying,Zheng Yaohua,Li Yuexin,Chen Qianshan ( ,, ,)
Abstract:Inrecentyears,viralpneumoniahasrapidlyspreadgloballyAlthoughithasbeecontroledtosomeextent,thevirus's mutabilityandrapidtransmisionremainunpredictable.Newvariantsmayposefreshchallnges,necesitatingcontiuousmonitoring andassessmentepidemicrisks.Therefore,tosupportpublichealtheforts,thispaperproposesanimprovedCTimagedetection modelbasedonimprovedconvolutionalneuralntworksutilizingdeepleaingalgorithmstoasistphysiciansinrapidlydiagosing pneumonia.FirstthispapermodifiestheclasificationlayerAexNetandintroducesasymmetricconvolutionalblockstoeplace some itsconvolutionallayers.SecondatentionmodulesareembeddedatdiferentpositionswithinAlexNetandGoogLeNetto enhancemodelrecognitionperformance.Finally,transferlearningtechniquesareemployedfortrainingtheimprovedmodels.The overall accuracy AlexNet+SE+CBAM reaches 98.78% ,while GoogLeNet-CBAM achieves 99.22% .After ensemble learning on partial models,the ensemble model's overall accuracy improves to 99.54% with a recall rate 99.58% 三 Keywords:Deep Learning;Convolutional Neural Networks;Ensemble Learning;Pneumonia Diagnosis
0引言
2019年12月至2024年8月期间,世界卫生组织报告全球病毒性肺炎确诊病例共计776,007,137例,其中死亡病例7,059,612例。(剩余8385字)