基于密集网络的中草药识别系统设计与实现

打开文本图片集
中图分类号:TP317;TP183 文献标识码:A 文章编号:1006-8228(2025)12-77-05
Abstract:TraditionalChineseherbsembodyrichculturalheritageandpharmacologicalvalue.Withtherapidadvancementof modernmedicineandartfcialintellgencetechnologies,implementingautomatedidentificationoftraditionalChineseherbsusing deeplearningmethodsrepresentsacrucialresearchdirectionforthedigitalizationandinteligenttransformationoftraditional medicine.Addressingchallngessuchasthevastvarietyofherbs,theirsimilarappearances,andloweficiencyinmanual identification,thispaperproposesatraditionalChinesehrbrecognitionsystembasedontheDenseNet121model.Developedusing PythonandtheFlaskframework,thesystemenablesimageuploading,displayofrecognitionresults,andherbalinformationqueries. ItconstructsadatasetbycrawlingandcolletingactualherbalimagesFollowingimagepreprocessng,theDenseNetmodel performsfeatureextractioclasificatioandecogitionExperimentsemonstrateattheenselycoectedarchitectrefte modelcaneectivelymitigatethegradientanishingproblem,improvefeaturereuseficiencyandrecognitionaccuracywiththe test set recognition accuracy reaching 94.44% :
Keywords:ChineseHerbalMedicineIdentification;DeepLearing;DenseNet121;ImageClassification;ArtificialInteligence
0引言
中草药种类繁多、形态相似,传统识别方法依赖专业人员的知识和经验,不仅主观性强,且识别效率低下,易出现误识别问题。(剩余6630字)