基于Transformer与特征映射的可解释性药物推荐方法

打开文本图片集
中图分类号:TP391 文献标识码:A
文章编号:1006-8228(2025)12-37-07
Explainable Medication Recommendation Method Based on Transformer and Feature Mapping
Li Yeting,Xu Chun
(SchoolofInformationManagementXinjiangUniversityofinanceandEconomics,UrumqiXinjiang3olhina)
Abstract:MedicationrecommendationisakeyaplicationofAIinhealthcare.Toadressthelimitationsofexistingmethods— suboptimalaccuracyandsafetyaswellaslimitedinterpretabilityofrecommendationresults—thispaperproposesExpMR,an explainablemedicationrecommendationmethod.First,aTransformerencodermodelslongitudinalEHRstolearnrobustpatient representations.Second,afeaturemappingmechanismprojectsthe"black-box"embedingsofdiagnoses,procedures,and medicationsontoanexplainabledimensionalfeaturespace,enhancingtransparencyandtraceabilityThird,acontrolabletheshold strategydyamicallyreweightsthedrug-druginteraction(DDI)losstoensuresafetyExperimentsonMMIC-IIandMIMIC-IV demonstratethatExpMRsurpasesstrongbaselinesonJaccardcoeffcient,F1,andPRAUC,whileachievinglowerDDIates, confirmingitscombined advantages in accuracy,safety,and interpretability.
Keywords:Medication Recommendation;Transformer;Feature Mapping;Interpretability
0引言
药物推荐旨在依据患者就诊时产生的电子健康记录(ElectronicHealthRecords,EHR),为医生提供精准、安全且有效的药物组合建议,从而提升处方效率和医疗服务质量。(剩余9528字)