基于Transformer与特征映射的可解释性药物推荐方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标识码:A

文章编号:1006-8228(2025)12-37-07

Explainable Medication Recommendation Method Based on Transformer and Feature Mapping

Li Yeting,Xu Chun

(SchoolofInformationManagementXinjiangUniversityofinanceandEconomics,UrumqiXinjiang3olhina)

Abstract:MedicationrecommendationisakeyaplicationofAIinhealthcare.Toadressthelimitationsofexistingmethods— suboptimalaccuracyandsafetyaswellaslimitedinterpretabilityofrecommendationresults—thispaperproposesExpMR,an explainablemedicationrecommendationmethod.First,aTransformerencodermodelslongitudinalEHRstolearnrobustpatient representations.Second,afeaturemappingmechanismprojectsthe"black-box"embedingsofdiagnoses,procedures,and medicationsontoanexplainabledimensionalfeaturespace,enhancingtransparencyandtraceabilityThird,acontrolabletheshold strategydyamicallyreweightsthedrug-druginteraction(DDI)losstoensuresafetyExperimentsonMMIC-IIandMIMIC-IV demonstratethatExpMRsurpasesstrongbaselinesonJaccardcoeffcient,F1,andPRAUC,whileachievinglowerDDIates, confirmingitscombined advantages in accuracy,safety,and interpretability.

Keywords:Medication Recommendation;Transformer;Feature Mapping;Interpretability

0引言

药物推荐旨在依据患者就诊时产生的电子健康记录(ElectronicHealthRecords,EHR),为医生提供精准、安全且有效的药物组合建议,从而提升处方效率和医疗服务质量。(剩余9528字)

monitor
客服机器人