基于RoBERTa-Prompt-R-Drop新闻主题分类

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.1 文献标识码:A文章编号:1006-8228(2025)12-44-06

Abstract:Toaddressthechallengesofmissngcontextanddatasparsityinnewstopicclasification,weproposeajoint optimizationframeworkthatintegratesRoBERTaPromptLearning,andR-Drop.Theframeworkreformulatesclasificationasa masked-language-modeltaskviaprompts,therebyactivatingRoBERTa'spre-trainedsemanticknowledgetocompensateforthelack ofcontext.ConurentlyR-DropapliesaKL-divergenceconsrinttotwostochastic-forwardasssofthesameinputyieldinga negative-samplefreecontrastiveregularizationthatdrivesthemodeltolearnnoise-robustrepresentationsandavoidsthepitfallof low-quality negative construction.Experiments on THUCNews show that our method achieves 96.61% accuracy,significantly outperformingallbaselinesandfullyconfirmingitseffectivenessinimprovingbothclasificationaccuracyandmodelrobustes.

Keywords:Text Classification;News Topic;RoBERTa;Prompt Learning;R-Drop

0引言

随着移动互联网的普及,新闻数据呈爆炸式增长。(剩余11228字)

monitor
客服机器人