改进粒子群算法的无人机三维路径规划

打开文本图片集
中图分类号:TP391.4;G434 文献标识码:A 文章编号:1006-8228(2025)12-08-06
Abstract:ToaddressthelimitationoftraditionalParticleSwarmOptimization(PSO)algorithmsinUAV3Dpathplanning:easily getingtrappedinlocaloptima,animprovedPSOalgoritm(ISO)isproposed.First,terrin-awarerandompermutationofHalton sequencesisemployedforiitializationtohanceparticledistributionuiformityandspatialcoverageSecondnonlineardyamic adjustmentofinertiaweightsandlearningfactorsbalancesglobalexplorationandlocalexploitation.Logarithmicspiraltemsand Laplaceperturbationsareintroducedintothevelocityandpositionupdateparts,espectivelytoimprovetheabilitytoscapelocal optima.Finallyaneliteretentionstrategyandapartialinferiorsolutionre-initilizationstrategyarecombinedtooptimize populatiodiversityExperimentsshowthatISOexhibitssuperiorglobalsearchcapabilitiesandstableoptimizationperforancein complex 3D environments,with a 16.35% increase in average fitness and an 82.78% reduction in standard deviation compared to traditional PSO,and thusoutperforming traditional PSO and other typical path planning algorithms.
Keywords:Halton Initialization;LogarithmicSpiral;ElitePreservation;NonlinearAdaptive;LaplacianPerturbation
0引言
随着科技进步和复杂环境探索需求增加,无人机三维路径规划具有灵活、高效等优点,广泛应用于侦察、物流、巡检、救援等领域。(剩余7392字)