基于SVM算法的植被DIM点云提取方法研究

打开文本图片集
中图分类号:P23 文献标识码:A文章编号:1006-8228(2025)12-31-06
Research on DIM Point Cloud Extraction Method of Vegetation Based on SVM Algorithm
CuiYing,Li Chunmei
(Shanxi RailwayVocational and Technical College,Taiyuan,Shanxi O3oooo,China)
Abstract:Thestudydrawsontheideaofsamplelearninginmachinelearning,andproposedavegetationdenseimagematching (DIM)pointcloudextractionmethodbasedonthesupportvectormachine(SVM)algorithm.FirstlyasmallnumberofDMpoint cloudsitheexperimentalareawereselectedasthesampleset,andthevegetationpointcloudsandnon-vegetationpointclouds withinthesamplesetweremarkedastwocategories.Then,featurevectorswereconstructedbasedonthecolorinformationofthe samplepoint clouds,andtheSVMalgorithmwasusedtoconstructtheclassficationmodeltolearnthesamplefeatures.Model trainingassuccesfullycompletedbyiterativecalculationtodeterminethesupportvectorsandsegmentationhyperplanerquired forthemodel.Experimentalresultsshowthatthemodelcanachieveeficientvegetationpointcloudextractionindiferentscenes. Among them,the shortest convergence time of the model in the school scene can reach 0.9s ,andthenumberof training iterations isonly 4 times,with a recognition accuracy ofover 94% .Therefore,the classification model based on the SVM algorithm for extractingvegetationDIMpointcloudshasstableconvergencespeedandrecognitionaccuracy,whichcanprovidetechnical reference for the application research on machine learningin point cloud classfication and extraction.
eyWords:Machine Learning;SVMAlgorithm;Sample Features;Vegetation DIMPoint Cloud
0引言
人工智能时代的到来,促使测绘科学从几何科学逐步向信息科学发展,对地理空间信息数据的分析和挖掘提出了新挑战-3]。(剩余7568字)