改进黑翅鸢算法的LSTM永嘉方言识别策略

打开文本图片集
中图分类号:TP391 文献标识码:A 文章编号:1006-8228(2025)10-44-07
Abstract:AimingattheaentandtonalcharacteristicsoftheYongjiadialect,thispaperproposesaLongShort-TemMemory (LSTM)speechrecognitionmodelbasedonanImprovedBlack-wingedKiteOptimizationAlgorithm(BKA).Firstlytoddreste shortcomingsofthetraditionalBlack-wingedKiteOptimizationAgorithm(BKA),theimprovedalgorithmintroducestheCebshev chaoticsequecetooptiizeitspopulationiitializationprocessDuringteositionupdatephaseitincoporatesalsositio basedlearningstrategytobalancethealgorithm'sglobalexplorationandlocalexploitationcapabilities,therebyenhancingits convergenceacuracyandspeed.Topreventprematureconvergence,animprovedGaussanmutationfactorisaddedtointroduce apropriateperturbations,helpingthealgorithmescapefromlocaloptima.Secondly,theimprovedBlack-wingedKiteAlgorithis integratedwiththeLSTMnetworktoconstructanIBKA-LSTMspeechrecognitionmodelFinallMel-FrequencyCepstral Coeficients(MFCC)areusedtoextractfeaturesfromthecharacteristcdialectspeechandrecognitionisperformedbytheIBKALSTM model.
Keywords:Black-wingedKiteAlgorithm;ChebyshevChaoticSequence;LensOpposition-BasedLearning;SpechRecognition; LSTM Network
0引言
伴随人工智能技术的发展以及语音识别技术的快速进步,众多语言学者致力于建立完整的大规模方言标准库,对各地的方言进行识别和分析。(剩余9032字)