融合知识图谱的Transformer课程理论智能图像生成方法研究

打开文本图片集
中图分类号:TP391 文献标识码:A
文章编号:1006-8228(2025)10-17-08
Research on a Transformer-based Intelligent Image Generation Method using Knowledge Graph for Curriculum Theory
WangMin,Bai Changsheng
(Shanxi InstituteofScienceand Technology,Jincheng,Shanxi O48o11,China)
Abstract:Toaddressthechallngesofcomplexlogicinomputercurriulumthoryandtheinefficincyoftraditioalvisualiaion tolsthisstudyinnovativelyintegratesTransfomerandknowledgegraphtechnologies,andproposesaTransformer-basedimage generationmodelbasedoncros-modalinformationintegrationandknowledgegraph-fusedThemodelintegratestextualsemantic informatioandthestructuralinformationoftheknowledgegraphstroughcross-modalencoding,anddesignsalogicalcostraint injectionmechanismtoguidethegenerationprocesstfollowcorectknowledgelogic.LRAparameterfine-tuningisintroducedto solvetheproblemofsparsetrainingdataineducationalscenarios.Theexperimentalresultsdemonstratethatcomparedtothe general-purpose Stable Diffusion XL model, the proposed approach achieves improvements of 13.2% inknowledge alignment accuracy and 17.2% inrelationalaccuracy.This ofersan effective technical pathwayfor visualizing course theoriesunder smalsampleand high-logicality constraints.
Keywords:Transformer;Knowledge Graph;LoRA;Stable Diffusion XI
0引言
在教育信息化2.0时代,有效的知识传递已成为教育改革的关键目标。(剩余12553字)