ASUN:一种基于最大最近邻比率的任意形状层次聚类方法

打开文本图片集
中图分类号:TP301.6 文献标识码:A 文章编号:1006-8228(2025)10-31-07
ASUN: A Hierarchical Clustering Method for Arbitrary Shape Using Maximum Nearest Neighbor Ratio
Zheng Aiyu
(SchoolofComputeriencedchoogyanUnesityofiencendcholoani3ooina)
Abstract:Althoughtraditionalhierarchicalclusteringalgorthmscanoutputcompletedendrograms,theyusuallyfailtoeffectively identifyarbtrarilyshapedclusters.Meanwhile,mostexistinghierarchicalclusteringalgorithmsdesignedforarbitrarilyshaped clustersrelyonreconstructedclusterstructures,whichofendependonmorecomplexconceptsandparametersandstruggleto producecompletedendrograms.Thispaperproposesasingle-parameterhierarchicalclusteringalgorithmforarbitrarilyshaped clustersbasedontheMaximumNearestNeighborRationamedASUN,whichnotonlyensuresclusteringaccuracyforarbitrarily shapedclustersbutalsoproduceshighqualitydendrograms.First,wedfineasimilaritymeasurebasedonthek-NearestNeighbor Pair(kNNP)relationshipbetweenclusters.ThekNNPrelationshipcharacterizestheintrinsicconectvityoflocalboundaries betweenclusters,andthissimilartymeasuremaximizestheaggregationdegreeoflocalboundariesoftwoclusters.Second,we elaborateindetailtheimplementationprocessoftheASUNalgorithmanditsoptimizedversion,f-ASUN.Finally,through comparativeexperimentswithsimilaralgorithmsonbothsyntheticandreal-worlddatasets,wevalidatetheefectivenessand efficiency of the proposed algorithm.
Keywords:ArbitraryShapeClusters;Dendrogram;LocalBoundary;MaximumNearestNeighborRatio;SingleParameter
0引言
聚类分析是数据挖掘和机器学习中的关键任务之一,其应用涵盖信息检索、计算机视觉和模式识别等领域。(剩余12081字)