基于CNN与多种机器学习算法投票的心脏病预测模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP39 文献标识码:A文章编号:1006-8228(2025)10-25-06

Heart Disease Prediction Model Based on CNN and Voting of Multiple Machine Learning Algorithms

Bi Jilin,Xiao Zuowen,He Hongyu

(SchoolofElectronicInformationandElectricalEnginering,YangtzeUniversityJingzhou,Hubei4332ia)

Abstract:Predictionofheartdiseaseusingmachinelearningmodelscanasistdoctorsindiagnosis;therefore,itisimportantto carryoutresearchonsuchmodels.Inthispaper,apredictionmodelbasedonconvolutionalneuralnetwork(CNN)andvotingof multiplemachinelearingalgoritmsisproposed.Firstthetabulardataarepreprocessed;then,featurecombinationandextraction areperformedbytheCNNmoduletoobtainfeaturevectors;next,thefeaturevectorsareinputintofourmachinelearning algorithms,namelyKNLogisticRegresionAdaboostandSVMandsoftvotingisapliedtoobtainthepreditiosults. Comparedwithmachinelearningpredictionmodelswithoutapplyingvoting,ourmodelshowsbeterresultsinheartdisease prediction:accuracyrateof0.93,precisionrateof0.945,recallrateof0.862,andAUCvalueof0.970.Thevoting-basedmodel ofmultiplemachinelearningalgorithmsproposedinthispapercanprovidedoctorswithmoreeffectivesupportinheartdisease diagnosis.

KeyWords:HeartDiseasePrediction;MachineLearning;SoftVoting;ConvolutionalNeuralNetwork;FeatureCombination

0引言

目前,我国心脏病患者数量持续增加、患者年龄逐渐下降,因此,心脏病已受到越来越多的关注[。(剩余7672字)

monitor
客服机器人