基于At-LSTM的GNSS失锁环境定位技术研究

打开文本图片集
关键词:组合导航;GNSS失锁;卡尔曼滤波;长短期记忆网络;注意力机制DOI:10.15938/j. jhust.2025.05.012中图分类号:TN967 文献标志码:A 文章编号:1007-2683(2025)05-0114-10
Abstract:ToaddresstheissueofdecreasedpositioningaccuracyinGNS-denedenvironentsfortheGlobalNavigatioSatelite System/Strapdown InertialNavigationSystem(GNSS/SIS)integratednavigationsystem,anintegratednavigationsystemaistedby Atention-basedLong Short-TermMemory(At-LSTM)network isproposedbasedontheKalmanfilter modeloftheintegrated navigationsystem.The network is trainedusing measurementdata when GNSS signalsareavailable.In GNS-deniedenvironments, thetrainednetwork isusedtoreconstructGNSSsignalsbasedonSINSmeasurements,and positioningisthenperformedthroughthe Kalmanfiltermodel.Theatentionmechanismisintroducedtodistinguishthimportanceofnetworkinputstotheoutput,tereby ensuringthestabilityoftheintegratednavigationsystem.Experimentswereconductedonamobileexperimental platfominGNSSdeniedenvironments.Theesultssowthatcomparedwithpureinertialnavigation,theAt-LST-asistedintegatednavigatiosystem reduces the east and north positioning errors by 54.8% and 18.2% ,respectively,after 3O seconds of operation,and by 81.5% and 67.3% ,respectively,after9Osecondsofoperation.Thisefectivelypreventsthedivergenceofpositioningresultsandsignificantly improves the positioning accuracy of the integrated navigation system in GNSS-denied environments.
Keywords:integrated navigation;GNSS-denied;Kalman filtering;long short-term memory;atention mechanism
0 引言
当今,智能移动机器人[1-3]和无人移动载具[4-6]获得了广泛的应用,定位技术能够给出物体在空间中的具体位置信息,是这些应用的基础。(剩余13640字)