半监督知识蒸馏的组织病理分类模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:组织病理分类;先验知识;自监督对比学习;知识蒸馏;半监督学习DOI:10.15938/j. jhust. 2025.05.001中图分类号:TP315.69 文献标志码:A 文章编号:1007-2683(2025)05-0001-15

Histopathological Classification Model for Semi-supervised Knowledge Distillation

XIE Yining',CHEN Xiaokai², ZHANG Yuming², ZHU Yinping², LONG Jun1 (1. Enginering, ,15O040,China; 2. Computer Control , , 15O040,China)

Abstract:Histopathologicalimageclasificationisakeytechnologyforcomputer-aideddiagnosis,whichlargelyreliesonalarge amount labeleddata.Although boostingsemi-supervised weaklysupervised methodscanreduce dependenceonlabeled data, theystillsufffrosussuchslodatautiztioxcsveodelparamesdpoodelgneralaiabilityodre thesechalenges,thispaperproposesasemi-supervisedlearningframework(BSL)basedonknowledgedistilltion.Thismethodfist utilieself-supeisedtrastivelaingtprainaistopaologialiagesificationodeltatitegatesprioroldgef cellnuclei,asthe teachermodel.Then,theteacher modelisfurthertrainedusingenhancedsemi-supervisedlearingmethods. Finally,theteachermodelisusedtoguidethetrainingthestudentmodelachieving knowledgetransfer,aceleratingmodel convergence,improvingitsperformance.Theexperimentalresultsshowthattheproposedmethodoutperforms existing methodson public datasets.

Keywords:histopathological clasification;priorknowledge;self-supervisedcontrastivelearing;knowledgedistilation;semi supervised learning

0 引言

胃癌是一种常见的恶性肿瘤,其发病率和死亡率在全球范围内居高不下,尤其在一些发展中国家和地区尤为突出。(剩余21755字)

monitor
客服机器人